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Most statistical tests rely upon certain assumptions about the variables used in the analysis. When these assumptions
are not met the results may not be trustworthy, resulting in a Type I or Type II error, or over- or under-estimation of
significance or effect size(s). As Pedhazur (1997, p. 33) notes, "Knowledge and understanding of the situations when
violations of assumptions lead to serious biases, and when they are of little consequence, are essential to meaningful
data analysis". However, as Osborne, Christensen, and Gunter (2001) observe, few articles report having tested
assumptions of the statistical tests they rely on for drawing their conclusions. This creates a situation where we have a
rich literature in education and social science, but we are forced to call into question the validity of many of these
results, conclusions, and assertions, as we have no idea whether the assumptions of the statistical tests were met. Our
goal for this paper is to present a discussion of the assumptions of multiple regression tailored toward the practicing
researcher.

Several assumptions of multiple regression are “robust” to violation (e.g., normal distribution of errors), and others are
fulfilled in the proper design of a study (e.g., independence of observations). Therefore, we will focus on the assumptions
of multiple regression that are not robust to violation, and that researchers can deal with if violated. Specifically, we
will discuss the assumptions of linearity, reliability of measurement, homoscedasticity, and normality.

VARIABLES ARE NORMALLY DISTRIBUTED.

Regression assumes that variables have normal distributions. Non-normally distributed variables (highly skewed or
kurtotic variables, or variables with substantial outliers) can distort relationships and significance tests. There are
several pieces of information that are useful to the researcher in testing this assumption: visual inspection of data plots,
skew, kurtosis, and P-P plots give researchers information about normality, and Kolmogorov-Smirnov tests provide
inferential statistics on normality. Outliers can be identified either through visual inspection of histograms or
frequency distributions, or by converting data to z-scores.

Bivariate/multivariate data cleaning can also be important (Tabachnick & Fidell, p 139) in multiple regression. Most
regression or multivariate statistics texts (e.g., Pedhazur, 1997; Tabachnick & Fidell, 2000) discuss the examination of
standardized or studentized residuals, or indices of leverage. Analyses by Osborne (2001) show that removal of
univariate and bivariate outliers can reduce the probability of Type I and Type II errors, and improve accuracy of
estimates.

Outlier (univariate or bivariate) removal is straightforward in most statistical software. However, it is not always
desirable to remove outliers. In this case transformations (e.g., square root, log, or inverse), can improve normality, but
complicate the interpretation of the results, and should be used deliberately and in an informed manner. A full
treatment of transformations is beyond the scope of this article, but is discussed in many popular statistical textbooks.

ASSUMPTION OF A LINEAR RELATIONSHIP BETWEEN THE INDEPENDENT AND DEPENDENT VARIABLE(S).

Standard multiple regression can only accurately estimate the relationship between dependent and independent
variables if the relationships are linear in nature. As there are many instances in the social sciences where non-linear
relationships occur (e.g., anxiety), it is essential to examine analyses for non-linearity. If the relationship between
independent variables (IV) and the dependent variable (DV) is not linear, the results of the regression analysis will
under-estimate the true relationship. This under-estimation carries two risks: increased chance of a Type II error for
that IV, and in the case of multiple regression, an increased risk of Type I errors (over-estimation) for other IVs that
share variance with that IV.

Authors such as Pedhazur (1997), Cohen and Cohen (1983), and Berry and Feldman (1985) suggest three primary ways
to detect non-linearity. The first method is the use of theory or previous research to inform current analyses. However,
as many prior researchers have probably overlooked the possibility of non-linear relationships, this method is not
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foolproof. A preferable method of detection is examination of residual plots (plots of the standardized residuals as a
function of standardized predicted values, readily available in most statistical software). Figure 1 shows scatterplots of
residuals that indicate curvilinear and linear relationships.

Figure 1. Exanple of curvilinear and linear relationships with standardized residuals by standardized predicted
values.
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The third method of detecting curvilinearity is to routinely run regression analyses that incorporate curvilinear
components (squared and cubic terms; see Goldfeld and Quandt, 1976 or most regression texts for details on how to do
this) or utilizing the nonlinear regression option available in many statistical packages. It is important that the
nonlinear aspects of the relationship be accounted for in order to best assess the relationship between variables.

VARIABLES ARE MEASURED WITHOUT ERROR (RELIABLY)

The nature of our educational and social science research means that many variables we are interested in are also
difficult to measure, making measurement error a particular concern. In simple correlation and regression, unreliable
measurement causes relationships to be under-estimated increasing the risk of Type II errors. In the case of multiple
regression or partial correlation, effect sizes of other variables can be over-estimated if the covariate is not reliably
measured, as the full effect of the covariate(s) would not be removed. This is a significant concern if the goal of research
is to accurately model the “real” relationships evident in the population. Although most authors assume that reliability
estimates (Cronbach alphas) of .7-.8 are acceptable (e.g., Nunnally, 1978) and Osborne, Christensen, and Gunter (2001)
reported that the average alpha reported in top Educational Psychology journals was .83, measurement of this quality
still contains enough measurement error to make correction worthwhile, as illustrated below.

Correction for low reliability is simple, and widely disseminated in most texts on regression, but rarely seen in the
literature. We argue that authors should correct for low reliability to obtain a more accurate picture of the “true”
relationship in the population, and, in the case of multiple regression or partial correlation, to avoid over-estimating the
effect of another variable.

Reliability and simple regression

Since “the presence of measurement errors in behavioral research is the rule rather than the exception” and
“reliabilities of many measures used in the behavioral sciences are, at best, moderate” (Pedhazur, 1997, p. 172); it is
important that researchers be aware of accepted methods of dealing with this issue. For simple regression, Equation #1
provides an estimate of the “true” relationship between the IV and DV in the population:
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In this equation, r;5is the observed correlation, and r;; and rgg are the reliability estimates of the variables. Table 1
and Figure 2 presents examples of the results of such a correction.

Table 1: Values of r and r? after correction for attenuation

Reliability of DV and IV

Perfect

.80 .70 .60 .50
measurement

Observed 9

. r r r r2 r 2 r 2 r 2
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Note: for simplicity we show an example where both IV and DV have identical reliability

estimates. In some of these hypothetical examples we would produce impossible values, and so do

not report these.

Figure 2: Change in variance accounted for as correlations are corrected for low reliability
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As Table 1 illustrates, even in cases where reliability is .80, correction for attenuation substantially changes the effect
size (increasing variance accounted for by about 50%). When reliability drops to .70 or below this correction yields a
substantially different picture of the “true” nature of the relationship, and potentially avoids a Type II error.

Reliability and Multiple Regression

With each independent variable added to the regression equation, the effects of less than perfect reliability on the
strength of the relationship becomes more complex and the results of the analysis more questionable. With the addition
of one independent variable with less than perfect reliability each succeeding variable entered has the opportunity to
claim part of the error variance left over by the unreliable variable(s). The apportionment of the explained variance
among the independent variables will thus be incorrect. The more independent variables added to the equation with low
levels of reliability the greater the likelihood that the variance accounted for is not apportioned correctly. This can lead
to erroneous findings and increased potential for Type II errors for the variables with poor reliability, and Type I errors
for the other variables in the equation. Obviously, this gets increasingly complex as the number of variables in the
equation grows.

A simple example, drawing heavily from Pedhazur (1997), is a case where one is attempting to assess the relationship
between two variables controlling for a third variable (r;5 5. When one is correcting for low reliability in all three

variables Equation #2 is used:
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Where rq7, o9, and rgs are reliabilities, and r;9, ro3, and ry5 are relationships between variables. If one is only correcting
for low reliability in the covariate one could use Equation #3:
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Table 2 presents some examples of corrections for low reliability in the covariate (only) and in all three variables.

Table 2: Vglyes of rjggand r2 12 8 after correction low reliability

Examoles: Reliability of Reliability of All
Xamples: Covariate Variables
.80 .70 .60 .80 .70 .60
Observed
rig ri3 ra23 r ri2.3 ri2.3 ri2.3 ri2.3 ri2.3 ri2.3
12.3
3 .3 .3 23 21 .20 .18 27 .30 .33
5 ) 5 .33 27 22 .14 .38 42 45
N 7 N 41 23 .00 -.64 47 .00 --
i .3 .3 .67 .66 .65 .64 .85 .99 --
3 ) ) .07 -.02 -.09 -20 -.03 -17 -.64
) 1 N .61 .66 74 .90 -- -- --

Note: In some examples we would produce impossible values that we do not report.

Table 2 shows some of the many possible combinations of reliabilities, correlations, and the effects of correcting for only
the covariate or all variables. Some points of interest: (a) asin Table 1, even small correlations see substantial effect
size (r?) changes when corrected for low reliability, in this case often toward reduced effect sizes (b) in some cases the
corrected correlation is not only substantially different in magnitude, but also in direction of the relationship, and (c) as
expected, the most dramatic changes occur when the covariate has a substantial relationship with the other variables.

ASSUMPTION OF HOMOSCEDASTICITY

Homoscedasticity means that the variance of errors is the same across all levels of the IV. When the variance of errors
differs at different values of the IV, heteroscedasticity is indicated. According to Berry and Feldman (1985) and
Tabachnick and Fidell (1996) slight heteroscedasticity has little effect on significance tests; however, when
heteroscedasticity is marked it can lead to serious distortion of findings and seriously weaken the analysis thus
increasing the possibility of a Type I error.

This assumption can be checked by visual examination of a plot of the standardized residuals (the errors) by the
regression standardized predicted value. Most modern statistical packages include this as an option. Figure 3 show
examples of plots that might result from homoscedastic and heteroscedastic data.

Figure 3. Examples of homoscedasticity and heteroscedasticity
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Ideally, residuals are randomly scattered around O (the horizontal line) providing a relatively even distribution.

Heteroscedasticity is indicated when the residuals are not evenly scattered around the line. There are many forms

heteroscedasticity can take, such as a bow-tie or fan shape. When the plot of residuals appears to deviate substantially
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from normal, more formal tests for heteroscedasticity should be performed. Possible tests for this are the Goldfeld-
Quandt test when the error term either decreases or increases consistently as the value of the DV increases as shown in
the fan shaped plot or the Glejser tests for heteroscedasticity when the error term has small variances at central
observations and larger variance at the extremes of the observations as in the bowtie shaped plot (Berry & Feldman,
1985). In cases where skewis present in the IVs, transformation of variables can reduce the heteroscedasticity.

CONCLUSION

The goal of this article was to raise awareness of the importance of checking assumptions in simple and multiple
regression. We focused on four assumptions that were not highly robust to violations, or easily dealt with through
design of the study, that researchers could easily check and deal with, and that, in our opinion, appear to carry
substantial benefits.

We believe that checking these assumptions carry significant benefits for the researcher. Making sure an analysis meets
the associated assumptions helps avoid Type I and IT errors. Attending to issues such as attenuation due to low
reliability, curvilinearity, and non-normality often boosts effect sizes, usually a desirable outcome.

Finally, there are many non-parametric statistical techniques available to researchers when the assumptions of a
parametric statistical technique is not met. Although these often are somewhat lower in power than parametric
techniques, they provide valuable alternatives, and researchers should be familiar with them.
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